AI-Chain
  • πŸ› Origin of AI-Chain
  • πŸ” Core Vision of AI-Chain
  • πŸ— Technological Evolution & Innovation
  • πŸ“Œ Market Background
    • The Necessity of AI-Blockchain Integration πŸ”
    • Market Growth and Trends πŸ“ˆ
    • Key Challenges in AI + Blockchain Integration ⚠️
    • Future Prospects of AI + Blockchain πŸš€
  • ⛓️ Market Demand
    • Current Challenges in the Market ❗
    • AI-Chain’s Solution βœ…
    • AI-Chain Use Cases πŸš€
  • πŸš€ Project Overview
    • How Does AI-Chain Work? βš™οΈ
    • Problems Solved by AI-Chain πŸ”₯
    • AI-Chain Ecosystem 🌐
    • Problems Solved by AI-Chain πŸ”₯
  • πŸ€–Core Technology
    • Decentralized AI Computing Architecture πŸ—οΈ
    • AI-Driven Smart Contracts πŸ€–
    • Privacy-Preserving AI Training πŸ”’
    • Cross-Chain AI Computation πŸ”—
  • πŸ”— Core Protocols
    • Decentralized AI Computation Consensus Protocol βš™οΈ
    • Privacy-Preserving AI Training Protocol πŸ”’
    • Decentralized Data Marketplace Protocol πŸ“Š
    • Cross-Chain AI Computation Protocol πŸ”—
  • 🌍 Real-World Applications
    • AI-Powered DeFi Optimization πŸ“Š
    • AI-Powered NFT Valuation & Creation 🎨
    • AI-Driven DAO Governance πŸ›
    • Privacy-Preserving AI Computation πŸ”’
    • AI-Enabled Decentralized Data Marketplace πŸ“‘
  • πŸ’° $AIC Economy Model
    • Token OverviewπŸ“Œ
    • Token Distribution πŸ“Š
    • Token Economy Model βš™οΈ
    • Staking & Yield Mechanism 🏦
  • πŸ›€οΈ Roadmap | Development Timeline
    • πŸ“… 2024 - Project Planning & Technical Research
    • πŸ“… 2025 - Ecosystem Expansion & Mainnet Development
    • πŸ“… 2026 & Beyond - Global Expansion
  • πŸ“Œ Conclusion πŸš€
Powered by GitBook
On this page
  1. πŸ€–Core Technology

Privacy-Preserving AI Training πŸ”’

Mathematical Model for Encrypted AI Training

To ensure privacy, AI-Chain leverages Fully Homomorphic Encryption (FHE), allowing AI models to be trained on encrypted data:

where:

  • is the optimal model parameter set.

  • is the loss function on encrypted data .

  • is an L2 regularization term to prevent overfitting.

  • is the encrypted input data.

This ensures that AI models can be trained securely on encrypted datasets without exposing raw data.

Python Implementation of Encrypted AI Training

from phe import paillier
import numpy as np

# Generate encryption keys
public_key, private_key = paillier.generate_paillier_keypair()

# Encrypt data
data = [10, 20, 30]
encrypted_data = [public_key.encrypt(x) for x in data]

# Homomorphic computation (encrypted summation)
encrypted_sum = sum(encrypted_data)

# Decrypt result
decrypted_sum = private_key.decrypt(encrypted_sum)
print("Decrypted sum:", decrypted_sum)

This implementation demonstrates privacy-preserving AI computation using homomorphic encryption.

PreviousAI-Driven Smart Contracts πŸ€–NextCross-Chain AI Computation πŸ”—

Last updated 3 months ago