AI-Chain
  • πŸ› Origin of AI-Chain
  • πŸ” Core Vision of AI-Chain
  • πŸ— Technological Evolution & Innovation
  • πŸ“Œ Market Background
    • The Necessity of AI-Blockchain Integration πŸ”
    • Market Growth and Trends πŸ“ˆ
    • Key Challenges in AI + Blockchain Integration ⚠️
    • Future Prospects of AI + Blockchain πŸš€
  • ⛓️ Market Demand
    • Current Challenges in the Market ❗
    • AI-Chain’s Solution βœ…
    • AI-Chain Use Cases πŸš€
  • πŸš€ Project Overview
    • How Does AI-Chain Work? βš™οΈ
    • Problems Solved by AI-Chain πŸ”₯
    • AI-Chain Ecosystem 🌐
    • Problems Solved by AI-Chain πŸ”₯
  • πŸ€–Core Technology
    • Decentralized AI Computing Architecture πŸ—οΈ
    • AI-Driven Smart Contracts πŸ€–
    • Privacy-Preserving AI Training πŸ”’
    • Cross-Chain AI Computation πŸ”—
  • πŸ”— Core Protocols
    • Decentralized AI Computation Consensus Protocol βš™οΈ
    • Privacy-Preserving AI Training Protocol πŸ”’
    • Decentralized Data Marketplace Protocol πŸ“Š
    • Cross-Chain AI Computation Protocol πŸ”—
  • 🌍 Real-World Applications
    • AI-Powered DeFi Optimization πŸ“Š
    • AI-Powered NFT Valuation & Creation 🎨
    • AI-Driven DAO Governance πŸ›
    • Privacy-Preserving AI Computation πŸ”’
    • AI-Enabled Decentralized Data Marketplace πŸ“‘
  • πŸ’° $AIC Economy Model
    • Token OverviewπŸ“Œ
    • Token Distribution πŸ“Š
    • Token Economy Model βš™οΈ
    • Staking & Yield Mechanism 🏦
  • πŸ›€οΈ Roadmap | Development Timeline
    • πŸ“… 2024 - Project Planning & Technical Research
    • πŸ“… 2025 - Ecosystem Expansion & Mainnet Development
    • πŸ“… 2026 & Beyond - Global Expansion
  • πŸ“Œ Conclusion πŸš€
Powered by GitBook
On this page
  1. πŸ”— Core Protocols

Privacy-Preserving AI Training Protocol πŸ”’

AI-Chain leverages Zero-Knowledge Proofs (ZK-SNARKs), Fully Homomorphic Encryption (FHE), and Multi-Party Computation (MPC) to protect AI training data.

πŸ“Œ Mathematical Model

Privacy-preserving AI training ensures that AI models are trained without exposing raw data:

where:

  • is the AI model parameter set

  • is the encrypted data input

  • is the loss function on encrypted data

  • is a regularization term to prevent overfitting

πŸ“Œ Python Implementation

from phe import paillier
import numpy as np

# Generate encryption keys
public_key, private_key = paillier.generate_paillier_keypair()

# Encrypt data
data = [public_key.encrypt(x) for x in [5, 10, 15]]

# Compute encrypted sum
encrypted_sum = sum(data)

# Decrypt result
decrypted_sum = private_key.decrypt(encrypted_sum)
print(f"Decrypted sum: {decrypted_sum}")
PreviousDecentralized AI Computation Consensus Protocol βš™οΈNextDecentralized Data Marketplace Protocol πŸ“Š

Last updated 3 months ago