Privacy-Preserving AI Training Protocol π
AI-Chain leverages Zero-Knowledge Proofs (ZK-SNARKs), Fully Homomorphic Encryption (FHE), and Multi-Party Computation (MPC) to protect AI training data.
π Mathematical Model
Privacy-preserving AI training ensures that AI models are trained without exposing raw data:
where:
is the AI model parameter set
is the encrypted data input
is the loss function on encrypted data
is a regularization term to prevent overfitting
π Python Implementation
from phe import paillier
import numpy as np
# Generate encryption keys
public_key, private_key = paillier.generate_paillier_keypair()
# Encrypt data
data = [public_key.encrypt(x) for x in [5, 10, 15]]
# Compute encrypted sum
encrypted_sum = sum(data)
# Decrypt result
decrypted_sum = private_key.decrypt(encrypted_sum)
print(f"Decrypted sum: {decrypted_sum}")
PreviousDecentralized AI Computation Consensus Protocol βοΈNextDecentralized Data Marketplace Protocol π
Last updated